SUBJECT DESCRIPTION FORM

Subject title: Hybrid and Electric Car Technolog	У			
Subject code: EE543				
<u>Credit value</u> : 3				
Responsible staff and department:				
Dr. T.F. Chan and Prof. K.W. Cheng, EE				
Pre-requisite: Nil				
Recommended background knowledge:			 	
A degree or equivalent in engineering.				
Mutual exclusions:				
EE512 Electric Vehicles				
Learning approach:				
Lecture	30 hours			
Lecture Tutorial/Visit	6 hours			
Lecture		_		
Lecture Tutorial/Visit	6 hours	_		
Lecture Tutorial/Visit Group Discussions & Presentations	6 hours 6 hours	_	 	
Lecture Tutorial/Visit Group Discussions & Presentations Total	6 hours 6 hours	_	 	
Lecture Tutorial/Visit Group Discussions & Presentations Total <u>Assessment</u> :	6 hours 6 hours 42 hours	_	 	

Objectives:

To provide practising engineers with a general knowledge of modern hybrid and electric vehicle technologies, and to understand their impact and significance on our society.

Programme Learning Outcomes:

Upon satisfactory completion of the subject, students are expected to achieve the following programme outcomes:

PO 1- To provide students with knowledge in automotive structures and systems;

PO 2- To enhance students with knowledge in car design and development;

Subject Learning Outcomes:

- 1. Have acquired a good understanding of modern hybrid and electric vehicle technologies.
- 2. Able to appreciate the impact and significance of hybrid and electric vehicle technologies on our society.
- 3. Able to appreciate the development trend of future hybrid and electric vehicles.

Keyword syllabus:

Introduction to Hybrid and Electric Vehicles: Historical perspective. Comparison between EV and HEV: performance, advantages and impacts. Market and promotion: infrastructure needs, legislation and regulation.

Hybrid and Electric Vehicle Design Options: EV configurations: fixed vs. variable gearing, single- vs. multiple-motor drive, in-wheel drives. HEV configurations: series hybrid and parallel hybrid, torque coordination and control, generator/motor requirements. Vehicle parameters, driving cycles and performance specifications.

Vehicle Dynamics and Motor Drives: Road load: vehicle kinetics; effect of velocity, acceleration and grade. EV drivetrain and components. Motor drive systems and control strategies. Efficiency mapping.

Energy Storage: Battery systems: battery parameters, types and characteristics, charging schemes and charger design, monitoring techniques. Capacitor systems: supercapacitors, ultracapacitors. Hydrogen storage. Flywheel systems.

Emerging Technologies: Fuel cell and alternative fuel electric vehicles (FEVs and AFEVs). Case studies on commercialised HEVs and EVs. Research and development activities.

Indicative reading list and references:

- 1. Husain Iqbal, *Electric and Hybrid Vehicles: Design Fundamentals*, CRC Press, 2003.
- 2. Larminie James and Lowry John, *Electric Vehicle Technology Explained*, Wiley, 2003.
- 3. Miller John M., Propulsion Systems for Hybrid Vehicles," IEE Power & Energy Series 45, 2004.
- 4. Ehsani Mehrdad Gao Yimin, Gay Sebastian E. and Emadi Ali, *Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory and Design*, CRC Press, 2004.
- 5. Selected papers from relevant journals and conference proceeding